Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service
نویسندگان
چکیده
Precise Point Positioning (PPP) is a popular technology for precise applications based on the Global Navigation Satellite System (GNSS). Multi-GNSS combined PPP has become a hot topic in recent years with the development of multiple GNSSs. Meanwhile, with the operation of the real-time service (RTS) of the International GNSS Service (IGS) agency that provides satellite orbit and clock corrections to broadcast ephemeris, it is possible to obtain the real-time precise products of satellite orbits and clocks and to conduct real-time PPP. In this contribution, the real-time multi-GNSS orbit and clock corrections of the CLK93 product are applied for real-time multi-GNSS PPP processing, and its orbit and clock qualities are investigated, first with a seven-day experiment by comparing them with the final multi-GNSS precise product ‘GBM’ from GFZ. Then, an experiment involving real-time PPP processing for three stations in the Multi-GNSS Experiment (MGEX) network with a testing period of two weeks is conducted in order to evaluate the convergence performance of real-time PPP in a simulated kinematic mode. The experimental result shows that real-time PPP can achieve a convergence performance of less than 15 min for an accuracy level of 20 cm. Finally, the real-time data streams from 12 globally distributed IGS/MGEX stations for one month are used to assess and validate the positioning accuracy of real-time multi-GNSS PPP. The results show that the simulated kinematic positioning accuracy achieved by real-time PPP on different stations is about 3.0 to 4.0 cm for the horizontal direction and 5.0 to 7.0 cm for the three-dimensional (3D) direction.
منابع مشابه
Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams
The multi-constellation Global Navigation Satellite Systems (GNSS) offers promising potential for the retrieval of real-time (RT) atmospheric parameters to support time-critical meteorological applications, such as nowcasting or regional short-term forecasts. In this study, we processed GNSS data from the globally distributed Multi-GNSS Experiment (MGEX) network of about 30 ground stations by u...
متن کاملReal-Time Kinematic Network of Tehran, from Design to Application
Following the request of the Tehran municipality and in order to provide the spatial information required in their various projects, a real-time kinematic network has been designed for Tehran. Based on the existing measures such as the dilution of precision at the network point positions, two different designs have been proposed. A minimum number of six GNSS stations are used in both of the pro...
متن کاملHigh Accuracy Real-Time Precise Point Positioning using the Japanese Quasi-Zenith Satellite System LEX Signal
The Quasi-Zenith Satellite System (QZSS) is a regional navigation satellite system transmitting navigation signals that are compatible and interoperable with GPS, as well as transmitting augmentation signals that carry bias correction messages. The L-band Experimental (LEX) signal on the E6b frequency delivers correction messages – such as orbits and clock information, which enable Precise Poin...
متن کاملReal-Time PPP Based on the Coupling Estimation of Clock Bias and Orbit Error with Broadcast Ephemeris
Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an ope...
متن کاملKinematic Precise Point Positioning Using Multi-Constellation Global Navigation Satellite System (GNSS) Observations
Multi-constellation global navigation satellite systems (GNSSs) are expected to enhance the capability of precise point positioning (PPP) by improving the positioning accuracy and reducing the convergence time because more satellites will be available. This paper discusses the performance of multi-constellation kinematic PPP based on a multi-constellation kinematic PPP model, Kalman filter and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018